Entropy: A Promising EEG Biomarker Dichotomizing Subjects With Opioid Use Disorder and Healthy Controls

Author:

Erguzel Turker Tekin1ORCID,Uyulan Caglar2ORCID,Unsalver Baris34,Evrensel Alper34,Cebi Merve3,Noyan Cemal Onur34,Metin Baris34,Eryilmaz Gul34,Sayar Gokben Hizli34,Tarhan Nevzat34

Affiliation:

1. Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey

2. Department of Mechatronics, Faculty of Engineering, Bulent Evevit University, Zonguldak, Turkey

3. Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey

4. NP Istanbul Brain Hospital, Istanbul, Turkey

Abstract

Electroencephalography (EEG) signals are known to be nonstationary and often multicomponential signals containing information about the condition of the brain. Since the EEG signal has complex, nonlinear, nonstationary, and highly random behaviour, numerous linear feature extraction methods related to the short-time windowing technique do not satisfy higher classification accuracy. Since biosignals are highly subjective, the symptoms may appear at random in the time scale and very small variations in EEG signals may depict a definite type of brain abnormality it is valuable and vital to extract and analyze the EEG signal parameters using computers. The challenge is to design and develop signal processing algorithms that extract this subtle information and use it for diagnosis, monitoring, and treatment of subjects suffering from psychiatric disorders. For this purpose, finite impulse response–based filtering process was employed rather than traditional time and frequency domain methods. Finite impulse response subbands were analyzed further to obtain feature vectors of different entropy markers and these features were fed into a classifier namely multilayer perceptron. The performances of the classifiers were finally compared considering overall classification accuracies, area under receiver operating characteristic curve scores. Our results underline the potential benefit of the introduced methodology is promising and is to be treated as a clinical interface in dichotomizing substance use disorders subjects and for other medical data analysis studies. The results also indicate that entropy estimators can distinguish normal and opioid use disorder subjects. EEG data and theta frequency band have distinctive capability for almost all types of entropies while nonextensive Tsallis entropy outperforms compared with other types of entropies.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3