Understanding the Pathophysiology of Mental Diseases and Early Diagnosis Thanks to Electrophysiological Tools: Some Insights and Empirical Facts

Author:

Sumiyoshi Tomiki1,Campanella Salvatore2ORCID,Giordano Giulia Maria3,Ishii Ryouhei4ORCID,Pogarell Oliver5ORCID

Affiliation:

1. Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan

2. Laboratory of Medical Psychology and Addictology, CHU Brugmann, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium

3. Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy

4. Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan

5. Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany

Abstract

Objective. Neurophysiological tools remain indispensable instruments in the assessment of psychiatric disorders. These techniques are widely available, inexpensive and well tolerated, providing access to the assessment of brain functional alterations. In the clinical psychiatric context, electrophysiological techniques are required to provide important information on brain function. While there is an immediate benefit in the clinical application of these techniques in the daily routine (emergency assessments, exclusion of organic brain alterations), these tools are also useful in monitoring the progress of psychiatric disorders or the effects of therapy. There is increasing evidence and convincing literature to confirm that electroencephalography and related techniques can contribute to the diagnostic workup, to the identification of subgroups of disease categories, to the assessment of long-term causes and to facilitate response predictions. Methods and Results. In this report we focus on 3 different novel developments of the use of neurophysiological techniques in 3 highly prevalent psychiatric disorders: (1) the value of EEG recordings and machine learning analyses (deep learning) in order to improve the diagnosis of dementia subtypes; (2) the use of mismatch negativity in the early diagnosis of schizophrenia; and (3) the monitoring of addiction and the prevention of relapse using cognitive event-related potentials. Empirical evidence was presented. Conclusion. Such information emphasized the important role of neurophysiological tools in the identification of useful biological markers leading to a more efficient care management. The potential of the implementation of machine learning approaches together with the conduction of large cross-sectional and longitudinal studies was also discussed.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3