New Approach to Epileptic Diagnosis Using Visibility Graph of High-Frequency Signal

Author:

Tang Xiaoying1,Xia Li1,Liao Yezi1,Liu Weifeng1,Peng Yuhua1,Gao Tianxin1,Zeng Yanjun2

Affiliation:

1. School of Life Science and Technology, Beijing Institute of Technology, Beijing, China

2. Biomechanics and Medical Information Institute, Beijing University of Technology, Beijing, China

Abstract

A new nonlinear approach is presented for high-frequency electrocorticography (ECoG)-based diagnosis of epilepsy. The ECoG data from 3 patients with epilepsy are analyzed in this study. A recently developed algorithm in graph theory, visibility graph (VG), is applied in this research. The approach is based on the key discovery that high-frequency oscillation takes place during epileptic seizure, making it a marker of epilepsy. Therefore, the nonlinear property of the high-frequency signal may be more noticeable. Hence, a complexity measure, called graph index complexity (GIC), is computed using the VG of the patients’ high-frequency ECoG subband. After comparison and statistical analysis, the nonlinear feature is proved to be effective in detection and location of the epilepsy. Two different traditional complexities, sample entropy and Lempel-Ziv, were also calculated to make a comparison and prove that GIC provides better identification.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3