Detection of an Autism EEG Signature From Only Two EEG Channels Through Features Extraction and Advanced Machine Learning Analysis

Author:

Grossi Enzo1ORCID,Valbusa Giovanni2,Buscema Massimo34

Affiliation:

1. Autism Research Unit, Villa Santa Maria Foundation, Tavernerio, Italy

2. Bracco Imaging, Milan, Lombardia, Italy

3. Semeion Research Centre, Rome, Italy

4. Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA

Abstract

Background and Objective In 2 previous studies, we have shown the ability of special machine learning systems applied to standard EEG data in distinguishing children with autism spectrum disorder (ASD) from non-ASD children with an overall accuracy rate of 100% and 98.4%, respectively. Since the equipment routinely available in neonatology units employ few derivations, we were curious to check if just 2 derivations were enough to allow good performance in the same cases of the above-mentioned studies. Methods A continuous segment of artifact-free EEG data lasting 1 minute in ASCCI format from C3 and C4 EEG channels present in 2 previous studies, was used for features extraction and subsequent analyses with advanced machine learning systems. A features extraction software package (Python tsfresh) applied to time-series raw data derived 1588 quantitative features. A special hybrid system called TWIST (Training with Input Selection and Testing), coupling an evolutionary algorithm named Gen-D and a backpropagation neural network, was used to subdivide the data set into training and testing sets as well as to select features yielding the maximum amount of information after a first variable selection performed with linear correlation index threshold. Results After this intelligent preprocessing, 12 features were extracted from C3-C4 time-series of study 1 and 36 C3-C4 time-series of study 2 representing the EEG signature. Acting on these features the overall accuracy predictive capability of the best artificial neural network acting as a classifier in deciphering autistic cases from typicals (study 1) and other neuropsychiatric disorders (study 2) resulted in 100 % for study 1 and 94.95 % for study 2. Conclusions The results of this study suggest that also a minor part of EEG contains precious information useful to detect autism if treated with advanced computational algorithms. This could allow in the future to use standard EEG from newborns to check if the ASD signature is already present at birth.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3