Affiliation:
1. Netaji Subhas Institute of Technology, New Delhi, India
2. Netaji Subhas University of Technology, New Delhi, India
Abstract
Common misbehavior among children that prevents them from paying attention to tasks and interacting with their surroundings appropriately is attention-deficit/hyperactivity disorder (ADHD). Studies of children's behavior presently face a significant problem in the early and timely diagnosis of this disease. To diagnose this disease, doctors often use the patient's description and questionnaires, psychological tests, and the patient's behavior in which reliability is questionable. Convolutional neural network (CNN) is one deep learning technique that has been used for the diagnosis of ADHD. CNN, however, does not account for how signals change over time, which leads to low classification performances and ambiguous findings. In this study, the authors designed a hybrid deep learning model that combines long-short-term memory (LSTM) and CNN to simultaneously extract and learn the spatial features and long-term dependencies of the electroencephalography (EEG) data. The effectiveness of the proposed hybrid deep learning model was assessed using 2 publicly available EEG datasets. The suggested model achieves a classification accuracy of 98.86% on the ADHD dataset and 98.28% on the FOCUS dataset, respectively. The experimental findings show that the proposed hybrid CNN-LSTM model outperforms the state-of-the-art methods to diagnose ADHD using EEG. Hence, the proposed hybrid CNN-LSTM model could therefore be utilized to help with the clinical diagnosis of ADHD patients.
Subject
Neurology (clinical),Neurology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献