Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN

Author:

Manoharan Thanga Aarthy1,Radhakrishnan Menaka2ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai, TN, India

2. Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, TN, India

Abstract

Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation. These sensory modulation deficits would ultimately lead them to difficulties in adaptive behavior and intellectual functioning. The purpose of this study was to observe changes in the nervous system with responses to auditory/visual and only audio stimuli in children with autism and typically developing (TD) through electroencephalography (EEG). In this study, 20 children with ASD and 20 children with TD were considered to investigate the difference in the neural dynamics. The neural dynamics could be understood by non-linear analysis of the EEG signal. In this research to reveal the underlying nonlinear EEG dynamics, recurrence quantification analysis (RQA) is applied. RQA measures were analyzed using various parameter changes in RQA computations. In this research, the cosine distance metric was considered due to its capability of information retrieval and the other distance metrics parameters are compared for identifying the best biomarker. Each computational combination of the RQA measure and the responding channel was analyzed and discussed. To classify ASD and TD, the resulting features from RQA were fed to the designed BiLSTM (bi-long short-term memory) network. The classification accuracy was tested channel-wise for each combination. T3 and T5 channels with neighborhood selection as FAN (fixed amount of nearest neighbors) and distance metric as cosine is considered as the best-suited combination to discriminate between ASD and TD with the classification accuracy of 91.86%, respectively.

Funder

Department of Science and Technology

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3