Quantification and characterization of the municipal solid waste for sustainable waste management in newly formed municipalities of Nepal

Author:

Pathak Dhundi Raj1,Mainali Bandita2ORCID,Abuel-Naga Hossam2,Angove Micheal3,Kong Ing2

Affiliation:

1. Engineering Study & Research Centre, Nepal

2. Department of Engineering, La Trobe University, Australia

3. Department of Pharmacy and Applied Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Australia

Abstract

This study was conducted to set up a new reference line for municipal solid waste quantification and characterization in the least urbanized cities of a developing nation. A survey was run to collect baseline data from 60 new municipalities of Nepal. The study covered a sample size of 3300 households, 600 institutions and 600 commercial establishments in those municipalities. The municipalities were further stratified according to geographical location, the degree of urbanization, household expenditure and population size to assess the influence on waste generation. The results indicated that the average per capita household waste generation is 115 g day-1 while the average total municipal waste generation was estimated to be 180 g day-1 per capita.The study also revealed that size of municipal population, geographic location, household expenditure and degree of urbanization were found to have a significant influence on the unit waste generation. The larger the size of municipal population the higher the per capita household waste generation, degree of urbanization and per capita waste production. Increasing household expenditure revealed an increase in the unit waste generation. The waste categories included organic waste, plastics, paper and paper products, textiles, rubber and leather, metals, glass, and others. The results indicated that organic waste dominated the characterization (62%), followed by plastics (12%) and paper/paper products (11%).

Funder

La Trobe Asia grant, La Trobe University

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3