Modelling the effects of particle size pretreatment method on biogas yield of groundnut shells

Author:

Olatunji Kehinde Oladoke1ORCID,Madyira Daniel M1,Ahmed Noor A1,Jekayinfa Simeon O2,Ogunkunle Oyetola1

Affiliation:

1. Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa

2. Department of Agricultural Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Abstract

Optimising biogas yields from anaerobic digestion of organic wastes is significant to maximum energy recovery in the biodigestion process and has become an important topic of interest. Substrate particle size is an important process parameter in biogas production, and it precedes other pretreatments methods for the majority of the lignocellulose materials. Optimisation of biogas yield using Response Surface Methodology (RSM) was done, and temperature, hydraulic retention time and particle size were considered variables to develop the predictive models. Pretreatment of groundnut shells was investigated using particle size reduction of mechanical pretreatment methods. After pretreatment, 30 samples were digested in a batch digester at mesophilic temperature. The experimental results showed that the temperature, hydraulic retention time and particle size had significant effects of interaction ( p < 0.05). The optimum experimental and predicted yields are: 44.70 and 42.92 (lNkgoDM) organic dry matter biogas yield, 20.80 and 19.09 (lN/kgFM) fresh mass biogas yield, 24.00 and 22.68 (lNCH4oDM) organic dry methane yield and 12.30 and 15.59 (lNCH4FM) fresh mass methane yield, respectively. The R2 recorded for the four yield components were 0.6268, 0.5875, 0.6109 and 0.5547. These values seem to be lower and a sign of the average fit of the model. Biogas production from groundnut shells was significantly improved with statistical optimisation and the pretreatment method.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3