Kinetic analysis of forced aeration composting- II. Application of multilayer analysis for the prediction of biological degradation

Author:

Bari Quazi H.1,Koenig A.2

Affiliation:

1. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

2. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,

Abstract

Extensive pilot-scale composting tests for organic solid waste were conducted under different modes of aeration, to investigate vertical temperature distributions and their effect on biological degradation at different heights of the composting mass. The modes of aeration applied were upflow, downflow, alternate upflow/downflow, and internal air recirculation. Temperatures at different heights of the composting mass were continuously monitored. Results show that (i) significant variation in temperature and biodegradable volatile solids (BVS) degradation occur in the composting mass along the vertical direction when unidirectional aeration is applied; (ii) application of alternate upflow/downflow aeration or periodic mixing greatly reduces vertical gradients in temperature and biodegradable volatile solids (BVS) degradation; and (iii) the rate and extent of degradation in different layers of the composting mass can be quantitatively predicted by applying a combination of multilayer analysis and a previously established temperature-dependent first-order reaction model.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Reference9 articles.

1. Temperature distribution and variation in passively aerated static compost piles

2. Finstein, M.S., Miller, F.C. & Strom, P.F. (1986) Waste treatment composting as a controlled system . In: Biotechnology. Weinheim, Germany: VCH Verlagsgesellschaft GmbH, Vol. 8, pp. 363-398.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes;Waste Management & Research: The Journal for a Sustainable Circular Economy;2017-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3