Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok

Author:

Menikpura SNM1,Sang-Arun Janya1,Bengtsson Magnus1

Affiliation:

1. Sustainable Consumption and Production (SCP) Group, Institute for Global Environmental Strategies (IGES), Hayama, Japan

Abstract

Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO2)-equivalents (eq) over its 10-year LFG recovery period. This amount is equivalent to only 12% of the methane (CH4) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO2-eq during the 20-year project period, which is equivalent to 43% of the CH4 generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3