Review: Mercury in waste incineration

Author:

van Velzen Daniel1,Langenkamp Heinrich1,Herb Georg2

Affiliation:

1. Commission of the European Union, Joint Research Centre, Environment Institute, Ispra (Va) Italy

2. Landesanstalt für Umwelschutz Baden Würtemberg, Karlsruhe, Germany

Abstract

The paper investigates the sources of mercury (Hg) in municipal/industrial waste and the consequences of the presence of this pollutant for the incineration of this waste. About 1990 the average mercury concentration of the feed stream to incinerators was about 4 mg kg -1. The concentration decreased considerably during the last decade thanks to a considerable reduction of the application of mercury and to the introduction of effective battery return systems. Presently the mercury concentration in municipal SOLID waste is approximately 2 mg kg-1. During incineration mercury passes practically for 100% in the flue gas. The techniques for mercury removal from flue gases are discussed at the hand of practical examples. It is concluded that there are a number of processes which guarantee mercury concentrations of <50 μg Nm-3 in the clean gas, the present emission limit concentration. All mercury control processes produce a new solid or liquid waste stream that contains the mercury removed from the flue gas. This stream has to be disposed of as hazardous waste in a qualified landfill. The flue gas from waste incinerators undergoes very rapid dispersion and dilution after leaving the incinerator stack. It follows that the maximum mercury concentration in the ambient air will remain at least five to six orders of magnitude below the lowest MAC value (=Maximum Admissible Concentration in work spaces) and that public health will not be threatened.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Reference25 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3