Possible environmental impacts of recycled glass used as a pavement base material

Author:

Imteaz Monzur Alam1,Ali MM Younus1,Arulrajah Arul1

Affiliation:

1. Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Melbourne, VIC, Australia

Abstract

In theory, glass diverted or recovered from the municipal solid waste (MSW) stream can be used as feedstock (glass cullet) in the production of new glass containers. However, post-consumer glass typically contains a mixture of clear and coloured material and is often contaminated with other wastes; characteristics that are impediments to the production of new containers. Sorting and cleaning of glass diverted from MSW to make it feasible for use in bottle industries are also time consuming and costly tasks. There is, however, the potential to use recycled glass as a sub-base material for road pavement construction. Geotechnical investigations to date suggest that use of recycled glass as a roadway sub-base could be cost-effective, and thus preclude the need for expensive sorting. There is, however, the necessessity to further investigate the potential short- and long-term toxicity, health hazards, and/or environmental pollution associated with use of mixed glass cullet as an aggregate, considering conditions during stockpiled storage and after placement. The results of laboratory tests on recycled glass regarding its potential to release pollutants to the environment via leaching are presented herein. Five random samples of crushed glasses were collected from a recycling company in Melbourne, Australia. The parameters tested for each sample were total organic matter, heavy metals, sulfates, chlorides, conductivity, pH and surfactant levels. It wais found that in most cases, the contamination levels were within the State of Victoria’s Environmental Protection Agency-specified limits for manual handling, thus indicating that recycled glass could probably be safely used in pavement sub-bases.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3