Effects of cement addition and briquetting of rock wool on its geomechanical stability in landfills

Author:

Sattler Theresa1ORCID,Sartori Marco1,Galler Robert2,Pomberger Roland1,Krainz Jörg2,Schimek Julia3,Vollprecht Daniel1

Affiliation:

1. Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversitaet Leoben, Austria

2. Chair of Subsurface Engineering (SE), Montanuniversitaet Leoben, Austria

3. PORR Umwelttechnik GmbH, Vienna, Austria

Abstract

Landfilling of mineral wool waste in big bags at separate landfill compartments is required in Austria. This results in enormous differences in the Young’s moduli between common construction and demolition (C&D) waste compartments and mineral wool compartments, which causes severe accidents in terms of overturned vehicles due to sudden subsidence of the subsurface. Conditioning of mineral wool waste might be applied to adjust its geomechanical behaviour to that of common C&D waste but has never been investigated scientifically before. In this study we compare three scenarios for the conditioning of rock wool for landfilling: (A) loosely packing, (B) cutting comminution + cement addition and (C) cutting comminution + cement-supported briquetting. The performance of the different sample bodies under landfill conditions was simulated at the lab scale by cyclic loading (1223–3112 N, up to 160 cycles) using a ‘Wille Geotechnik UL 300’ press. The deformation was monitored during the experiment and Young’s modulus was derived graphically, whereas the test execution was piston controlled. The Young’s modulus increased during the experiments from 0.2 MPa to 4.6 MPa for scenario (A), from 0.6 MPa to 20.5 MPa for scenario (B) and from 7.5 MPa to 111.0 MPa for scenario (C). These results show that a combination of comminution and cement-supported briquetting significantly increases the geotechnical performance of mineral wool waste with respect to landfilling, which is still three orders of magnitude below that of common C&D waste, which is in the range of 30,000 MPa.

Funder

österreichische forschungsförderungsgesellschaft

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3