Environmental assessment of amending the Amager Bakke incineration plant in Copenhagen with carbon capture and storage

Author:

Bisinella V.1ORCID,Nedenskov J.2,Riber Christian3,Hulgaard Tore3,Christensen Thomas H.1

Affiliation:

1. Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark

2. Amager Resource Center, Copenhagen S, Denmark

3. Ramboll Group A/S, Copenhagen S, Denmark

Abstract

Amending municipal solid waste incineration with carbon capture and storage (CCS) is a new approach that can reduce the climate change impacts of waste incineration. This study provides a detailed analysis of the consequences of amending the new Amager Bakke incinerator in Copenhagen (capacity: 600,000 tonnes waste per year) with CCS as a post-combustion technology. Emphasis is on the changes in the energy flows and outputs as well as the environmental performance of the plant; the latter is assessed by life cycle assessment. Amending Amager Bakke with CCS of the chosen configuration reduces the electricity output by 50% due to steam use by the capture unit, but introducing post-capture flue gas condensation increases the heat output utilized in the Copenhagen district heating system by 20%. Thus, the overall net energy efficiency is not affected. The CCS amendment reduces the fossil CO2 emissions to 40 kg CO2 per tonne of incinerated waste and stores 530 kg biogenic CO2 per tonne of incinerated waste. Potential developments in the composition of the residual waste incinerated or in the energy systems that Amager Bakke interacts with, do not question the benefits of the CCS amendment. In terms of climate change impacts, considering different waste composition and energy system scenarios, introducing CCS reduces in average the impact of Amager Bakke by 850 kg CO2-equivalents per tonne of incinerated waste. CCS increases the environmental impacts in other categories, but not in the same order of magnitude as the savings introduced within climate change.

Funder

Amager Resource Center

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3