Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue

Author:

Feng Jiayu1,Zhang Jiyu1,Zhang Jiafu1,He Yanfeng1,Zhang Ruihong2,Liu Guangqing1,Chen Chang13

Affiliation:

1. Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China

2. Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA

3. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China

Abstract

Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS-1, which was 27.65% (significant, α < 0.05) more than untreated vinegar residue (120.31 mL gVS-1). The analyses of pH, total ammonia-nitrogen, total alkalinity, and volatile fatty acids showed that steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3