Sustainable location and route planning with GIS for waste sorting centers, case study: Kerman, Iran

Author:

Farahbakhsh Amin1ORCID,Forghani Mohammad Ali1

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

One of the important issues in the world is the significant growth of waste production, including waste that is not biodegradable in nature. According to the Kerman Municipality, 440 tonnes of municipal waste is collected daily in Kerman consisting of five major parts of paper, plastic, metal, glass, and wet waste. The major problems of municipal solid waste disposal are soil erosion, air pollution, and greenhouse gas emissions. The most important factors related to recycling are waste sorting and the relevant environmental conditions. This study aims to create a sustainable approach by locating the optimal sites to reduce environmental pollution, decrease costs, and improve the service system to the society. Optimal locations for establishing the collecting and sorting centers in the city are specified by the use of geographic information system software, based on criteria consisting of population density, road network, distance to health centers, distance to disposal center, waste sorting culture, land space, and land cost, which were weighted by an analytical hierarchy process. It was noteworthy that the criterion “waste sorting culture”, which has a foundation in human sciences and sociology, has been considered by experts in this study to be of the highest importance among other criteria at locating sorting centers. Subsequently, using a symmetric capacitated vehicle routing problem, the number and capacity of each vehicle are determined to serve the specified locations according to the economic, social, and environmental constraints.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3