Costs and benefits of recycling PVC contaminated with the legacy hazardous plasticizer DEHP

Author:

Brignon Jean-Marc1ORCID

Affiliation:

1. INERIS, Parc Technologique ALATA, Verneuil-en-Halatte, France

Abstract

Reusing materials is an attractive option for circular economy and can also reduce emissions of greenhouse gases and pollutants. However, recycling raises questions regarding the potential risks to human health or the environment when hazardous legacy chemical additives of materials are also recycled, instead of the recent and less hazardous additives of virgin materials. To address this trade-off, this study developed a model to calculate the total external cost of material supply, considering the health and environmental impacts of all industrial steps (e.g. virgin material production, incineration, and recycling), and the health effects of recycling chemicals present in the material. The model is coupling material flow analysis, life-cycle analysis, and environmental economics to compare different recycling policies. It is applied for all illustrative purposes to soft PVC and DEHP in France. Results show that recycling of materials is in the long-term positive despite the prolongation of the presence of hazardous additives in materials. The time when the recurring environmental benefits of recycling offset the negative impacts on human health of recycling the additives is very sensitive to the health impact of additives. This approach can improve the harmonization between recycling and circular economy policies, and as a framework to confirm the relevance and size treatments to remove additives from materials during recycling.

Funder

Ministère pour une Transition Ecologique et Solidaire, France

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3