Mitigating long-term emissions of landfill aftercare: Preliminary results from experiments combining microbial electrochemical technologies and in situ aeration

Author:

Pivato A1ORCID,Raga R1,Marzorati S2,Cerminara G1,Lavagnolo MC1,Schievano A2

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, ICEA, Padova, Italy

2. Department of Environmental Science and Policies, eBioCenter, Milano, Italy

Abstract

Landfills still represent the main option for waste disposal in many parts of the world. Anyway, they often pose a significant pollution risk and contribute to potential environmental and human health impacts via gaseous and liquid (leachate) emission pathways if not properly managed. Some innovative technologies can help to reduce these emissions, such as in situ aeration and the application of microbial electrochemical technologies (METs). METs are an emerging field that open the possibility to control microbial reactions, enhancing electron flows from electron donors towards electron acceptors. To this end, several materials with different electrochemically-active properties are used, such as electrical conductivity, capacitance, surface electroactivity and charge. The present project named LA-LA-LAND (Landfill electron-Lapping for a LANDscape requalification) was aimed to apply METs to treat leachate-saturated zones in old landfills. A MET prototype was constructed using a granular anode (graphite) and a cylindrical air-cathode (electroactive biochar). The METs were integrated to three identical laboratory-scale landfill bioreactors coupled with the in situ aeration technique, while three control reactors run without MET. The maximum values of current and power density obtained were 0.015 A·m−2 and 0.00035 W·m−2. The influence of the MET system on the organic matter removal was evident in two reactors, where this technology was applied, with respect to the control ones: total organic carbon decreased on average 13%, while it reduced less than 5% in the control reactors. This preliminary experiment pointed out some critical aspects of MET configuration, such as the weakness of the cathode architecture, which was prone to be flooded by leachate, blocking the aeration flux.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3