Life cycle assessment for solid waste management in Lebanon: Economic implications of carbon credit

Author:

Maalouf Amani1,El-Fadel Mutasem1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, American University of Beirut, Lebanon

Abstract

Solid waste management has witnessed much progress in recent years with considerable efforts targeting the reduction of associated impacts and carbon emissions. Such efforts remain relatively limited in developing economies due to inefficient management practices. In this study, a life cycle assessment (LCA) approach is adopted to identify integrated systems with minimal impacts and reduced emissions in a developing context coupled with an economic valuation and sensitivity analysis to assess the effect of varying influencing parameters individually. The results showed that the highest impact arises from landfilling with minimal material recovery for recycling and composting, while incineration coupled with energy recovery contributed to the least equivalent emissions (–111% with respect to baseline scenario) at a varying cost of −70% to +93% depending on the selected technology and the value of carbon credit. Optimizing material recycling, composting and landfilling with energy recovery contributed to 98% savings in emissions (with respect to baseline scenario) and remained economically attractive irrespective of the carbon credit exchange rate of 0.5–50 US$/MTCO2E. The sensitivity analysis showed that an improvement in landfill gas collection efficiency (up to 60%) can contribute to major savings in emissions (58%). The application of the LCA-based approach supports the development of integrated viable plans while quantifying advantages and disadvantages towards decision-making and policy-planning.

Funder

Conseil National de la Recherche Scientifique

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3