Ultrastructural cytochemistry of p-N,N-dimethylamino-beta-phenethylamine (DAPA) oxidation reactions.

Author:

Shannon W A,Wasserkrug H L,Plapinger R E,Seligman A M

Abstract

The ultracytochemical localization of amine oxidase (AO) activity is demonstrated with a new substrate, p-N,N-dimethylamino-beta-phenethylamine (DAPA). DAPA was designed to yield a stronger reducing agent on oxidation by monoamine oxidase (MAO) than is obtained from the MAO substrate, tryptamine, upon oxidation. Thus MAO and possibly other oxidase(s) can be demonstrated with DAPA and the tetrazolium salt, 2-(2'-benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl) tetrazolium chloride (BSPT). The latter is a nonosmiophilic tetrazolium salt which is reduced to an osmiophilic formazan. In addition, DAPA itself demonstrates AO activity ultracytochemically with and without BSPT. We speculate that either oxidative polymerization of DAPA or Schiff's base formation with protein after aldehyde formation is responsible for the latter reaction, which is made permanent for ultracytochemical localization by osmication at a later step. DAPA oxidation reaction products are demonstrated in guinea pig kidney, specifically in the endoplasmic reticulum, nuclear envelope and mitochondrial outer compartments and cristae. Differences in reaction product characteristics and localization in relation to formaldehyde fixation and the localization of reaction product in mitochondrial cristae, as well as outer compartments, suggest that DAPA oxidation is mediated through one or more MAOs and possible other oxidases.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3