Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction

Author:

Djuidje Kenmoé Germaine1,Fogno Fotso Hervice Roméo1ORCID,Aloyem Kazé Claude Vidal2

Affiliation:

1. Laboratory of Mechanics, Department of Physics, University of Yaoundé I, Yaoundé, Cameroon

2. Department of Renewable Energy, Higher Technical Teachers Training College Kumba, University of Buea, Buea, Cameroon

Abstract

This paper investigates six of the most widely used wind speed forecasting models for a combination of statistical and physical methods for the purpose of Wind Turbine Power Generation (WTPG) prediction in Cameroon. Statistical method based on both single static and dynamic neural networks architectures and two hybrid neural networks architectures in comparison to ARIMA model are employed for multi-step ahead wind speed forecasting in two Datasets in Bapouh, Cameroon. The physical method is used to estimate 1 day ahead expected WTPG for each Dataset using the previous predicted wind speed from better forecasting models. The obtained results of multi-step ahead forecasting showed that the ARIMA and nonlinear autoregression with exogenous input neural network (NARXNN) models perform well the wind speed forecasting than other forecasting models in both Datasets. The better performances of ARIMA are achieved with one-step ahead and two-step ahead forecasting, while NARXNN is better with one-step ahead forecasting. But NARXNN models have more computational time than other models such as ARIMA models. Furthermore, the effectiveness of employed hybrid method for WTPG prediction is proven.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3