Modelling and simulation of wind flow: A gradient method of identifying windy region

Author:

Nnamchi SN1ORCID,Jagun ZO2,Nnamchi OA3,Mundu MM4,Onochie U5

Affiliation:

1. Department of Mechanical Engineering, Kampala International University, Kansanga, Kampala, Uganda

2. Department of Computer Engineering, Olabisi Onabanjo University, Ibogun, Nigeria

3. Department of Agricultural Engineering and Bio Resources, Michael Okpara University of Agriculture, Umudike, Umuahia, Nigeria

4. Department of Physical Sciences, SEAS, Kampala International University, Kampala, Uganda

5. Department of Mechanical Engineering, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki, Nigeria

Abstract

This paper presents biharmonic modelling and simulations of surface wind flow, which identify windy locales through wind speed gradients. The bulk measured and meteosat wind speed data encapsulate the wind isotachs and wind flow gradients, which are very useful in identifying windy locales. Thus, this paper presents a biharmonic wind flow model, BWFM for the development of wind isotachs and gradients to identify locales suitable for installing solar photovoltaic power plants within the study areas. The techniques include the acquisition of wind speed data (1980–2020) from the National Aeronautic and Space Administration (NASA), development of multiple BWFM solutions (free and forced) depending on the presence and absence of forcing function, respectively. The forcing function represents the topographic and orographic features of the study areas. The spatial development of isopleth of the study areas, unveiled the isotachs. The wind speed gradients were obtained by scalar computation of 2-D wind speed gradients. Comparison of forced solution with the threshold or maximum free solution engendered the identification of windy locales. The results of the model were validated against NASA data. The average wind speed threshold isotach (2.83 m/s) and wind gradient ([Formula: see text]) for the study areas (All Regions) were established by scalar computation of free solution gradients. The study areas include Northern, Eastern, Central and Western Regions recorded the following maximum forced average wind speeds (2.725, 2.755, 2.875 and 1.794 m/s, respectively) and maximum wind flow gradients (insignificant, 0.03767, 0.08469 and infinitesimal [Formula: see text], respectively). These results are useful for identifying windy locales for installation of solar and wind facilities.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3