A generalized computational approach to predict high-frequency acoustic pressure response of cavity structures for structural health monitoring of wind turbine blades

Author:

Traylor Caleb1,Inalpolat Murat1ORCID

Affiliation:

1. University of Massachusetts Lowell, Lowell, MA, USA

Abstract

This paper details the development of a generalized computational approach that enables prediction of cavity-internal sound pressure distribution due to flow-generated noise at high frequencies. The outcomes of this research is of particular interest for development of an acoustics-based structural health monitoring system for wind turbine blades. The methodology builds from existing reduced-order aeroacoustic modeling techniques and ray tracing based geometrical acoustics and is demonstrated on the model NREL 5 MW wind turbine blade as a case study. The computational predictions demonstrated that damage could be successfully detected in the first half of the blade cavity near the root and that the change in frequency content may be indicative of the type of damage that has occurred. This study provides a foundation to analyze specific blades and likely damage cases for determining key factors of system design such as number and placement of sensors as well as for hardware selection.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3