Sensorless passivity based control of doubly-fed induction generators in variable-speed wind turbine systems based on high gain observer

Author:

Saihi Lakhdar1ORCID,Berbaoui Brahim2,Djilali Larbi3,Boura Mohammed4

Affiliation:

1. Unité de Recherche en Energies Renouvelables en Milieu Saharien URERMS, Centre de Développement des Energies Renouvelables CDER, Adrar, Alegria

2. Department of Electrical and Computer Engineering, University of Draia Ahmed Adrar, Adrar, Algeria

3. Telecommunications, Signals and Systems Laboratory, University Amar Telidji, Laghouat, Algeria

4. Department of Science and technology, University of Tahri Mohamed Bechar, Bechar, Algeria

Abstract

The current study presents a robust sensorless control using passivity based control (PBC) combined with high gain observer (HGO). The proposed controller is applied to control the generated doubly-fed induction generator (DFIG) active and reactive power installed on a variable speed wind energy conversion system. The control objective is used to regulate independently the DFIG stator active and reactive power, which are decoupled by using the field oriented control technique. Additionally, this process leads to reduce the cost of control scheme by eliminating the speed sensor. Firstly, the DFIG is modeled under the port controlled Hamiltonian (PCH) model, as well as the method of simultaneous injection damping. Then, the DFIG is further modeled by assignment passivity based on the simultaneous injection damping and assignment (SIDA-PBC) control of the obtained model under such conditions and a comparison with the fuzzy sliding mode controller is carried out. Furthermore, the HGO is selected in order to estimate the rotor position and the speed from the measurement of the DFIG currents and voltages, and compared with fuzzy sliding mode observer. For testing the proposed control scheme performance, a 1.5 MW DFIG system is developed and simulated using MATLAB/Simulink. The obtained results demonstrate the effectiveness of the proposed control scheme in the presence of various DFIG parameters variation. Additionally, the control objective is achieved without speed sensor.

Funder

the Renewable Energy Research Unity in Saharan Medium (URER/MS) linked to the Renewable Energy Development Center (CDER).

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3