Wind speed estimation and maximum power point tracking using neuro-fuzzy systems for variable-speed wind generator

Author:

Hermassi Mahdi1ORCID,Krim Saber23,Kraiem Youssef4,Hajjaji Mohamed Ali1,Mimouni Mohamed Faouzi2,Mtibaa Abdellatif5

Affiliation:

1. Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia

2. Laboratory of Automatic, Electrical Systems and Environment, National Engineering School of Monastir, University of Monastir, Monastir, Tunisia

3. Department of Technology, Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Kairouan, Tunisia

4. Univ. Lille, Arts et Metiers Institute of Technology, Centrale Lille, Junia, ULR 2697 - L2EP, Lille, France

5. Systems Integration & Emerging Energies Laboratory (LR 21 ES 14), University of Sfax, Sfax, Tunisia

Abstract

This paper proposes a novel method using a machine learning-based Adaptive Neuro-Fuzzy Inference System (ANFIS) to optimize Maximum Power Point Tracking (MPPT) in variable-speed Wind Turbines (WT). The ANFIS algorithm, blending artificial neural networks and fuzzy logic, addresses issues with traditional wind speed sensors, such as cost, imprecision, and susceptibility to adverse weather conditions. An initial offline-trained ANFIS is suggested to understand turbine power characteristics, and subsequently estimate varying wind speed, addressing strong nonlinearity due to WT aerodynamics and wind speed fluctuations. A second ANFIS efficiently tracks the maximum power point, overcoming limitations of linear controllers. Implemented in Matlab/Simulink for a 3.5 kW WT, the approach demonstrates effectiveness, precision, and faster response time in wind speed estimation and accurate MPPT compared to alternatives. A notable advantage is its independence from instantaneous wind speed measurement, providing a cost-effective solution for wind energy systems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3