Analyzing feature impacts in wind turbine power output modelling using quantile regression

Author:

Raj Rishita1,Wadhvani Rajesh1ORCID,Rasool Akhtar1,Gupta Muktesh1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, MP, India

Abstract

The wind power industry is experiencing significant growth, establishing itself as a sustainable and environmentally friendly energy resource. A predictive model for wind turbine power output is essential to optimize operational costs. In practical scenarios, the technical specifications of turbines alone are inadequate to estimate power output under varying environmental conditions. This research conducts feature impact analysis to investigate the complex relationships of various meteorological variables. The traditional ordinary least squares regression model that is frequently used for predictive modelling cannot effectively capture the changing effects observed at different levels of the response variable's distribution. This limitation motivates the adoption of quantile regression, which offers the analysis of features' impact on response variables by estimating the model parameters at various quantiles. By conducting feature impact analysis across multiple quantiles, this study reveals various trends at different quantiles, which can optimize model parameters in wind turbine power output modelling.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3