Modeling and control of islanded DC microgrid fed by intermittent generating resources

Author:

Kumar Anupam1ORCID,Rathore Arun1,Singh Shubhendra Pratap2,Bhat Abdul Hamid3

Affiliation:

1. Department of Electrical and Electronics Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India

2. Department of Electrical Engineering, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

3. Department of Electrical Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India

Abstract

In this paper an islanded microgrid fed through the wind and solar energy resources is presented. The power flow within the microgrid is controlled using a Neutral Point Clamped Dual Active Bridge (NPC-DAB) converter. In the proposed dc microgrid, the solar energy source is associated at the low voltage (LV) bus and the wind energy source is connected at the high voltage (HV) bus. A permanent magnet synchronous generator (PMSG) machine is used in wind energy conversion system. The real time solar radiation and wind speed data of Rupangarh, Rajasthan, India is used as an input for renewable energy resource. The NPC-DAB will work as a power electronics juncture for expediting the energy exchange in the islanded DC Microgrid. The proposed closed loop controller based on the capacitor voltage and load voltage will expedite a complete automatic operation of the islanded DC-microgrid considering various load changes. The system is studied without storage element as the automatic control of energy generation and load feeding is carried out by the NPC-DAB, also this makes the scheme cost effective. The optimum duty ratios for NPC-DAB operation are obtained and thus the increased load demand is met. The modeling of PMSG, NPC-DAB and wind energy system is discussed in details in this work. The proposed system is studied in MATLAB/Simulink environment and results are obtained for different load variations. All the wind control parameters, NPC-DAB waveforms, load waveforms are also plotted using MATLAB.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3