PSO-optimized sensor-less sliding mode control for variable speed wind turbine chains based on DPIG with neural-MRAS observer

Author:

Saihi Lakhdar1ORCID,Ferroudji Fateh1ORCID,Roummani Khayra1,Koussa Khaled1,Djilali Larbi2

Affiliation:

1. Unité de Recherche en Energies Renouvelables en Milieu Saharien URERMS, Centre de Développement des Energies Renouvelables CDER, Adrar, Algeria

2. TecNM Chihuahua, Tecnológico, Chihuahua, México

Abstract

This research introduces a resilient Sensor-Less 1st Sliding Mode (SL-FOSM) approach employing a novel observer, the Artificial Neural Network with Model Reference Adaptive System-Adaptive (Neural-MRAS), for wind turbine chains. The proposed model is implemented on a Doubly Powered Induction Generator (DPIG) operating under genuine variable speed conditions in the Adrar region in Algeria. The control objective is to independently regulate the active and reactive power of the DPIG stator, achieved through decoupling using the field-oriented control technique and control application via FOSM-C. Notably, this methodology reduces both the control scheme cost and the DPIG size by eliminating the need for a speed sensor (encoder). To enhance the MRAS-PI, an Artificial Neural Network (ANN) is suggested to replace the typical classical Proportional-Integral (PI) controller in the adaptation mechanism of MRAS. The rotor position estimation is scrutinized and discussed across various load conditions in low, zero, and high-speed regions. Optimal controller parameters are determined through particle swarm optimization (PSO). The results demonstrate that the proposed observer (Neural-MRAS) exhibits compelling attributes, including guaranteed finite time convergence, robust performance in response to speed variations, high resilience against machine parameter fluctuations, and adaptability to load variations when compared to the MRAS-PI. Consequently, the estimated rotor speed converges to its actual value, showcasing the capability to accurately estimate position across different speed regions (low/zero/high).

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3