Research on formation mechanism and output effect of wind turbine ice-covered blades

Author:

Guan Xin12ORCID,Li Mingyang1,Wu Wei1,Xie Yuqi1,Sun Yongpeng1

Affiliation:

1. School of New Energy, Shenyang Engineering College, Shenyang, Liaoning, P. R. China

2. Shenyang Key Laboratory Clean Energy Fine Comprehensive Utilization and Scheduling Energy Storage, Shenyang, Liaoning, P. R. China

Abstract

Considering the physical characteristics of wind turbine wing icing, icing synthesis rate, and icing type, we selected the icing type and surface roughness of ice-coated blades as sensitive parameters. The focus of our research was on the equivalent particle roughness height correction model, and we numerically analyzed the two icing processes (frost ice and clear ice) on wind turbine blade surfaces by combining FENSAP-ICE and FLUENT analysis tools. We predicted the ice type on blade surfaces using a multi-time step method and analyzed how variations in icing shape and ice surface roughness affect the aerodynamic performance of blades during frost ice formation or clear ice formation. Our results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice. Clear ice has a greater impact on aerodynamics compared to frost ice, while frost ice is significantly influenced by the roughness of its icy surface. These findings can serve as valuable references for wind power operators and manufacturers seeking solutions to issues related to blade surface icing under extremely cold conditions.

Funder

Natural Science Foundation of Liaoning Province

Foundation of Liaoning Province Education Administration

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3