Numerical study on flow characteristics of shroud with and without flap for wind turbine applications

Author:

Ramayee L.1ORCID,Supradeepan K.1ORCID

Affiliation:

1. Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, Telangana, India

Abstract

Shrouded wind turbines have the shroud added to the rotor’s circumference, enhancing wind power compared to conventional wind turbines. This article aims to design a shorter aerofoil cross-sectional enclosure for the wind turbine that improves average velocity and reduces drag, duct material volume, and tower load. Numerical simulations were performed to understand the characteristics of shroud alone and shroud with flap using ANSYS Fluent in the operating regime of the small wind turbine. The influence of the shroud’s length-to-diameter L/ D ratio and angle on the performance was analyzed using a one-factor-at-a-time (OFAT) approach, and the optimum values were found. Then the analysis was performed by including the flap at the exit of an optimized shroud. The shroud with flap results showed enhanced average velocity, increased mass flow rate, and higher drag forces than a single long shroud. In order to reduce the drag coefficient, the enclosure geometrical parameters were analyzed using the Design of Experiments (DOE) approach. The results show that the shroud L/ D ratio significantly affects the average velocity. Moreover, the optimum combination was found as shroud L/ D ratio=0.4, shroud angle=9°, flap L/ D ratio=0.2, flap angle=16°, and radial distance of 0.2 R. The proposed combination helps to get an acceleration factor of 1.78, a drag coefficient of 1.84, and a material volume of 0.7×10−3 m3. It was found that the optimal ratio of shroud L/ D could be between 0.3 and 0.6, resulting in a higher acceleration factor, lower material volume, and shorter length. The drag forces acting in the shroud alone and shroud with flap were studied by analyzing the forces in every section. The results show that the negative drag force acts in the shroud’s inner leading edge.

Funder

Department of Science and Technology, India

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver

2. Upgrading conventional wind turbines

3. DeYoung J (1947) Theoretical additional span loading characteristics of wings with arbitrary sweep, aspect ratio, and taper ratio. Technical report, UNT Digital Library, Denton.

4. Multi-element ducts for ducted wind turbines: a numerical study

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3