Applications of hybrid SMC and FLC for augmentation of MPPT method in a wind-PV-battery configuration

Author:

Menzri Fatima1,Boutabba Tarek23,Benlaloui Idriss3,Bawayan Haneen4,Mosaad Mohmed I5ORCID,Mahmoud Mohamed Metwally6ORCID

Affiliation:

1. LGEA Laboratory, Department of Electrical Engineering, Larbi Ben M'hidi University, Oum El Bouaghi, Algeria

2. Université Abbas Laghrour Khenchela, Algerie

3. LSPIE Laboratory, Department of Electrical Engineering , University of Batna 2, Batna, Algeria

4. Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

5. Department of Electrical and Electronics Engineering, Yanbu Industrial College, Yanbu, Saudi Arabia

6. Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan, Egypt

Abstract

Green energy sources (GESs) in electrical systems have become widely included in electrical networks for their significant subnational impacts on the economy and the environment. Regrettably, the power generating capacity of these GESs is significantly influenced by environmental circumstances, such as temperature and sun irradiation for PV systems and wind speed for WT systems. Environmental changes impact the power capacity of the electrical system since the maximum amount of power that can be generated will only be achieved by implementing control measures. This research aims to enhance the efficiency of a standalone renewable power system by optimizing the energy output from GESs using the MPPT technique, considering the impact of climate fluctuations. The standalone hybrid GESs combines PV and WT technologies with a BSS. For the PV and WT, a combinatorial MPPT technique is proposed to modify the control settings for this system optimally. This method is based on the SMC and FLC. The FLC plays a role in achieving the MPPT target by utilizing membership functions designed to handle uncertainties caused by shifting environmental conditions. Whereas for the BSS, an energy management plan is developed to optimize the performance of the HRES. The system under study outfitted with the MPPT technology, functions in tandem with a BSS. In case of failure or insufficient power generation from primary sources, a DC/DC bidirectional converter is employed to adjust the charging and discharging of the BSS, ensuring a stable supply of DC power. The system’s response in different climates is examined, and the proposed combination controller’s intended effectiveness is confirmed using MATLAB\Simulink. The investigated structure can achieve approximately 99.213% efficacy with the support of the proposed SMC-FLC method, which is 19.874% greater than the widely used P&O method.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3