Energy management strategies of hybrid renewable energy systems: A review

Author:

Ibrahim Marwa M.1ORCID

Affiliation:

1. Mechanical Engineering Department, Engineering Research Division, National Research Centre (NRC), Giza, Egypt

Abstract

Burning fossil fuels results in more emissions than generating electricity from renewable sources. The transition to renewable energy from fossil fuels, which currently produce the majority of emissions, is essential to preventing the climatic disaster. Hybrid energy generation systems are still in their infancy. It is envisaged that future technology developments would lead to greater application and more economical goods. There will be more standardised designs, which will make it easier to select a system that is suitable for a certain application. The components will communicate more with one another. As a result, control, monitoring, and diagnosis will be made simpler. The hybrid energy system (HES), also known as hybrid power, is expected to be the long-term power solution for microgrid (MG) systems. This study compares and contrasts several theories and conventional approaches to controlling HRES’s control and energy consumption. A successful energy management strategy has been created using a variety of methods and procedures. The effectiveness of an EMS is determined by its control architecture and the solution approach used; common topologies include hierarchical, decentralised and centralised EMS. Supply side management and demand side management, two EMS components, will be discussed later. The three EMS control architectures are examined in this section. In order to determine the most practical and dependable solution with the lowest Net present cost (NPC), COE and realistic environmental consequences, various hybridisation cases of a PV panel, wind turbine, battery storage and diesel generator are designed, analysed and compared using DSM. The results of taking into account DSM indicated a reduction in CO2 emissions of 25%, NPC emissions of 14.8%, COE emissions of 14% and an increase in RF emissions of 8.5%. Two fundamental metrics – the DSM Quality Index for technical benefits and the DSM Appreciation Index for economic advantages – are used to assess the technical and economic benefits of DSM.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3