Power-setpoint extremum seeking control for maximizing wind power capture of turbine and farm operation

Author:

Kumar Devesh1ORCID,Li Yaoyu1ORCID,Wu Zhongyou1ORCID

Affiliation:

1. Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA

Abstract

In this paper, we propose a power-setpoint based Extremum Seeking Control (ESC) framework for model-free Region-2 controls for maximizing the power capture for turbine and farm operation, without dependency on wind measurement. As a major obstacle for retrofitting wind turbine/farm controls is that only the power setpoint is accessible, the power-setpoint based ESC framework is proposed with a back-calculation anti-windup structure. If increasing the power demand cannot further increase actual power output, the anti-windup structure automatically holds the power demand setpoint. For farm operation, the proposed method is integrated into the Delay-compensated Nested-loop ESC. The proposed method is evaluated by simulations on the SimWindFarm platform for both single-turbine and farm operation scenarios. The results demonstrate the capability of tracking the achievable optimum power for turbine and farm operation, with only reasonable increase of some loads. The proposed method promises an easy-to-implement model-free retrofitting control strategy for enhancing wind energy capture.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3