Affiliation:
1. DIT University, Dehradun, India
Abstract
This work focused on the prediction of generation of renewable energy (solar and wind) using the machine learning ML algorithms. Prediction of generation are very important to design the better microgrids storage. The various ML algorithms are as logistic regression LR and random forest RA and the ARIMA, time series algorithms. The performance of each algorithm is evaluated using the mean absolute error, mean squared error, root mean squared error, and mean absolute percentage error. The MAE value for the ARIMA (0.06 and 0.20) model for solar and wind energy is very less as compared to RF (15.65 and 61.73) and LR (15.78 and 54.65) of solar and wind energy. Same with MSE and RMSE, the MSE and RMSE value for the ARIMA of solar energy model obtained is 0.01 and 0.08 and wind energy is 0.07 and 0.27 respectively. Comparative analysis of all of these matrices of each algorithm for both the dataset, we concluded that the ARIMA model is best fit for the forecasting of solar energy and wind energy.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献