Affiliation:
1. Department of Management Information Systems, Higher Institute for Specific Studies, Egypt
Abstract
Audio classification tasks like speech recognition and acoustic scene analysis require substantial labeled data, which is expensive. This work explores active learning to reduce annotation costs for a sound classification problem with rare target classes where existing datasets are insufficient. A deep convolutional recurrent neural network extracts spectro-temporal features and makes predictions. An uncertainty sampling strategy queries the most uncertain samples for manual labeling by experts and non-experts. A new alternating confidence sampling strategy and two other certainty-based strategies are proposed and evaluated. Experiments show significantly higher accuracy than passive learning baselines with the same labeling budget. Active learning generalizes well in a qualitative analysis of 20,000 unlabeled recordings. Overall, active learning with a novel sampling strategy minimizes the need for expensive labeled data in audio classification, successfully leveraging unlabeled data to improve accuracy with minimal supervision.
Subject
Management Science and Operations Research,Organizational Behavior and Human Resource Management
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献