Modeling of cutting performances in turning process using artificial neural networks

Author:

Dahbi Samya1,Ezzine Latifa2,EL Moussami Haj1

Affiliation:

1. Mechanics and Integrated Engineering, ENSAM School, Moulay Ismail University, Al Mansour, Meknes, Morocco

2. Modeling, Control Systems and Telecommunications, EST School, Moulay Ismail University, Toulal, Meknes, Morocco

Abstract

In this article, we present the modeling of cutting performances in turning of 2017A aluminum alloy under four turning parameters: cutting speed, feed rate, depth of cut, and nose radius. The modeled performances include surface roughness, cutting forces, cutting temperature, material removal rate, cutting power, and specific cutting pressure. The experimental data were collected by conducting turning experiments on a computer numerically controlled lathe and by measuring the cutting performances with forces measuring chain, an infrared camera, and a roughness tester. The collected data were used to develop an artificial neural network that models the pre-cited cutting performances by following a specific methodology. The adequate network architecture was selected using three performance criteria: correlation coefficient ( R2), mean squared error (MSE), and average percentage error (APE). It was clearly seen that the selected network estimates the cutting performances in turning process with high accuracy: R2 > 99%, MSE < 0.3%, and APE < 6%.

Funder

Laboratory of Computer-Aided Design and Manufacturing, ENSAM School, Moulay Ismail University, Meknes, Morocco.

Publisher

SAGE Publications

Subject

Management Science and Operations Research,Organizational Behavior and Human Resource Management

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3