Affiliation:
1. Department of Aerospace Engineering, I.I.T., Kharagpur-721302, India
2. Department of Aerospace Engineering, I.I.T., Kharagpur-721302, India,
Abstract
The parametric resonance characteristics of laminated composite doubly curved panels subjected to various in-plane static and periodic compressive edge loadings, including partial and concentrated edge loading are studied using finite element analysis. The first order shear deformation theory is used to model the doubly curved panels, considering the effects of transverse shear deformation and rotary inertia. The theory used is the extension of dynamic, shear deformable theory according to the Sander’s first approximation for doubly curved laminated shells, which can be reduced to Love’s and Donnell’s theories by means of tracers. The effects of number of layers, static load factor, side to thickness ratio, shallowness ratio, boundary conditions, degree of orthotropy, ply orientations and various load parameters on the principal instability regions of doubly curved panels are studied in detail using Bolotin’s method. Quantitative results are presented to show the effects of shell geometry, lamination details and load parameters on the stability boundaries. Results of plates and cylindrical shells are also presented as special cases and are compared with those available in the literature.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献