An undercarriage image driven anomaly detection method for metro vehicle based on adversarial memory enhancement

Author:

Wang Lei12,Zhang Kai234ORCID,Zheng Qing23,Ding Guofu23,Zhang Weihua4,Chen Dejun5,Liu Bin5

Affiliation:

1. Tangshan Institute, Southwest Jiaotong University, Tangshan, China

2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

3. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu, China

4. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China

5. Rail vehicle operation Department, Tangshan Baichuan Intelligent Machine Co., Ltd., Tangshan, China

Abstract

Anomaly detection is essential to ensure metro vehicles' safe operation. Error reconstruction-based anomaly detection methods have been widely studied because they only need to be trained by normal data and do not require much anomaly data, which is challenging to obtain. However, sometimes the auto-encoder network for error reconstructing “generalizes” so well that it also rebuilds the anomaly well, leading to missed anomaly detection. Therefore, this paper proposes an undercarriage image-driven anomaly detection method for metro vehicles based on adversarial memory enhancement. Firstly, this study performs component segmentation based on YOLOv5 detection results and constructs a component anomaly detection dataset. Secondly, an anomaly detection method based on memory enhancement and adversarial training of encoding-decoding-encoding structure is proposed for component anomaly detection. It enables the auto-encoder to reconstruct the image better. Thirdly, the combined indicator of the difference between potential features and reconstruction error is used as an anomaly indicator for anomaly detection of metro components, reducing the rate of fault misses. The experimental results on the established dataset demonstrate that the proposed method reduces false negative rates of 92.4%, 92.6%, 74.6%, and 59.1% compared with [Formula: see text], [Formula: see text], GANomaly, and MemAE, respectively.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3