Composite energy-absorbing structures combining thin-walled metal and honeycomb structures

Author:

Zhou Hui123,Xu Ping12,Xie Suchao12

Affiliation:

1. Key Laboratory of Traffic Safety on Track, Ministry of Education, Central South University, Changsha, PR China

2. School of Traffic & Transportation Engineering, Central South University, Changsha, China

3. School of Traffic and Logistics, Central South University of Forestry and Technology, Changsha, China

Abstract

The energy-absorbing structure of a crashworthy railway vehicle was designed by combining the characteristics of thin-walled metal structures and aluminum honeycomb structures: finite element models of collisions involving energy-absorbing structures were built in ANSYS/LS-DYNA. In these models, the thin-walled metal structure was modeled as a plastic kinematic hardening material, and the honeycomb structure was modeled as an equivalent solid model with orthotropic–anisotropic mechanical properties. The analysis showed that the safe velocity standard for rail vehicle collisions was improved from 25 km/h to 45 km/h by using a combined energy-absorbing structure; its energy absorption exceeded the sum of the energy absorbed by the thin-walled metal structure and honeycomb structure when loaded separately, because of the interaction effects of thin-walled metal structure and aluminum honeycomb structure. For an aluminum honeycomb to the same specification, the composite structure showed the highest SEA when using a thin-walled metal structure composed of bi-grooved tubes, followed by that using single-groove tubes: that with a straight-walled structure had the lowest SEA.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3