Propagation characteristics of tunnel compression waves with multiple peaks in the waveform of the pressure gradient: Part 1: Field measurements and mathematical model

Author:

Miyachi Tokuzo1,Saito Sanetoshi1,Fukuda Takashi1,Sakuma Yutaka1,Ozawa Satoru2,Arai Takakage3,Sakaue Shoji3,Nakamura Shinya1

Affiliation:

1. Environmental Engineering Division, Railway Technical Research Institute, Japan

2. Emeritus professor, Tokyo University of Technology, Tokyo, Japan

3. Department of Aerospace Engineering, Osaka Prefecture University, Japan

Abstract

A high-speed train entering a tunnel generates a compression wave. When the compression wave reaches the exit portal of the tunnel, a micro-pressure wave radiates outward. The magnitude of the micro-pressure wave is approximately proportional to the pressure gradient of the compression wave arriving at the exit portal. As the micro-pressure wave can cause environmental problems, tunnel entrance hoods have been installed at many portals of long slab track tunnels on the Japanese high-speed railway, the Shinkansen to reduce the magnitude of the micro-pressure wave. In this study, field measurements were taken in a Shinkansen long slab track tunnel with a hood at its entrance. The compression wave distorts during its propagation through a long slab track tunnel. The dependence of the propagation characteristics on the initial compression waveform was clarified on the basis of field measurements on different trains and hood window configurations. It was shown that compression waves with a waveform of the pressure gradient that has shallow valleys tend to steepen more easily and that the optimum window pattern of the hood depends on the length of the tunnel. Furthermore, a mathematical model corresponding to the results of the field measurements was proposed to describe the distortion of the compression waves.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3