A fractional Fourier transform-based method to detect impacts between the bogie and the car body of a railway vehicle: A data-driven approach

Author:

Gutiérrez-Carvajal RE1,Betancur German R1,Castañeda Leonel F1,Zajac G2

Affiliation:

1. Universidad EAFIT, Medellín, Colombia

2. Cracow University of Technology, Kraków, Poland

Abstract

Structural railway transport elements are typically designed to work for at least 30 years without undergoing major maintenance. However, real-life operational conditions present behaviors different to the model predicted during the initial design phase, which affects the lifetime of the elements in question. This is the case of first-generation railway vehicles which operates in the city of Medellín, Colombia, as the bolster beam presented cracks after 12 years of operation, possibly due to undesired impacts between the bogie and the pivot of the bolster beam. Monitoring vibrational signals would give some sort of an insight into impact phenomena; however, herein lies the problem, as they are difficult to identify using only vibration signals, occurring during time events that take place in a speed-varying system. In this article, the authors present a technique that automatically detects impacts using multiple in-between time/frequency representations, ranking them according to their capacity to discriminate between impact events. Our results show that the best representation for this data was the Fractional Cepstrum Transform at order 0.5 (auROC = 0.961), which outperformed the best pure domain descriptor by least 4%.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Failure analysis of the pivot of a metro train;Engineering Failure Analysis;2022-05

2. Images of Vibrations of a Passing Railway Vehicle;TRANSBALTICA XI: Transportation Science and Technology;2020

3. Failure analysis of a crack on a train bolster;Engineering Failure Analysis;2019-03

4. Analysis of vibration propagation in the human body;Journal of Measurements in Engineering;2018-12-31

5. Application of time-frequency method for research on influence of locomotive wheel slip on vibration;Journal of Vibroengineering;2018-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3