A computational fluid dynamics study of the influence of sleeper shape and ballast depth on ballast flight during passage of a simplified train

Author:

Pardoe Lee1ORCID,Powrie William1,Hu Zhiwei1

Affiliation:

1. School of Engineering, University of Southampton, Southampton, UK

Abstract

The paper assesses the effect on the air flow regime underneath a simplified high-speed train of changing the ballast depth and the sleeper shape, with regard to its potential for causing ballast flight or pickup. The study was carried out numerically using the commercial Computational Fluid Dynamics (CFD) software AnSys Fluent. The flow profile beneath the underbody of the train was generated by means of a moving wall above the track. The Delayed Detached Eddy Simulation (DDES) with the SST [Formula: see text] turbulence model was used to simulate turbulent flow, and the ballast bed roughness was applied parametrically using the wall roughness feature when resolving the boundary layer. CFD simulations were validated for flow over a cube, showing good agreement with experimental results. Up to three different depths to the ballast surface and three different sleeper profiles were investigated. Velocity profiles and aerodynamic forces on cubes placed between or on top of the sleeper blocks were used to assess the propensity of individual ballast grains for movement. For a standard G44 sleeper, increasing the ballast depth and/or the ballast bed roughness was found to reduce aerodynamic loads on an individual ballast grain. A ballast grain on top of the sleeper is more prone to uplift than a grain on the surface of the ballast bed in the crib. A curved upper surface to the sleeper is beneficial in that it prevents ballast from settling on top, the most vulnerable position. However, the reduced flow separation associated with the curved top may increase the likelihood of ballast pickup from the crib. Hence new sleeper shapes intended to reduce the potential for ballast flight should not only prevent ballast from settling on top, but also increase flow separation through the provision of a sharp surface. A prismatic sleeper shape that achieves both is suggested.

Funder

Doctoral Training Centre in Transport and the Environment

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3