Optimal track geometry maintenance limits using machine learning: A case study

Author:

Kasraei Ahmad1,Zakeri Jabbar Ali1ORCID,Bakhtiary Arash1

Affiliation:

1. School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The aim of this study has been to determine the optimal maintenance limits for one of the main railway lines in Iran in such a way that the total maintenance costs are minimized. For this purpose, a cost model has been developed by considering costs related to preventive maintenance activities, corrective maintenance activities, inspection, and a penalty costs associated with exceeding corrective maintenance limit. Standard deviation of longitudinal level was used to measure the quality of track geometry. In order to reduce the level of uncertainty in the maintenance model, K-means clustering algorithm was used to classify track sections with most similarity. Then, a linear function was used for each cluster to model the degradation of track sections. Monte Carlo technique was used to simulate track geometry behavior and determine the optimal maintenance limit which minimizes the total maintenance costs. The results of this paper show that setting an optimal limit can affect total annual maintenance cost about 27 to 57 percent.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying climate-related failures in railway infrastructure using machine learning;Transportation Research Part D: Transport and Environment;2024-10

2. Reliability analysis of railway assets considering the impact of geographical and climatic properties;International Journal of System Assurance Engineering and Management;2024-06-21

3. Measuring vertical track irregularities from instrumented heavy haul railway vehicle data using machine learning;Engineering Applications of Artificial Intelligence;2024-01

4. Evaluating the efficiency of rail gauge maintenance in Siberia;E3S Web of Conferences;2023

5. Maintenance Methodologies Embraced for Railroad Systems: A Review;Advances in Materials Science and Engineering;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3