Forecasting cross-tie condition based on the dynamic adjacent support using a theory-guided neural network model

Author:

Soufiane Kenza1ORCID,Zarembski Allan M.1ORCID,Palese Joseph W.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, USA

Abstract

Cross-ties represent a key infrastructure asset of the railroad industry. Recent research has shown that the cross-tie life is not only affected by the traditionally defined load and track design parameters but also by support condition, and in particular, support condition as represented by the condition of adjacent cross-ties. This paper builds upon the recent research and is focused on predicting a cross-tie’s future condition as a function of the changing condition of the surrounding cross-ties. As accurate cross-tie condition information becomes available from automated inspection systems, this data allows for the development of a theoretical framework for predicting cross-tie degradation and corresponding cross-tie life. This theoretical framework allows for the modeling of the interactions between adjacent cross-ties as a complex and dynamic system. Thus, the objective of this paper is to develop a model that uses theory guided machine learning framework as supported by well-defined railroad engineering relationships, such as the Beam on Elastic Foundation theory, to forecast the cross-tie condition as a function of its adjacent cross-ties and their corresponding degradation rates. The resulting model outperformed a more conventional traditional neural network model. The theory guided machine learning model showed very good correlation with actual data exhibiting an R2 of 88.6% and an a20-index of 91% suggesting that the incorporation of domain knowledge into the machine learning model leads to demonstrably better cross-tie life prediction results.

Funder

United States Department of Transportation, University Transportation Center program

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference56 articles.

1. Sonti SS, Davalos JG, Zipfel MG, et al. A review of wood crosstie performance. For Prod J; 45: 55.

2. Modeling and optimal design of composite-reinforced wood railroad crosstie

3. Cost and Delay of Railroad Timber and Concrete Crosstie Maintenance and Replacement

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ballast Settlement Accumulation in Zones with Unsupported Sleepers;Transportation Infrastructure Geotechnology;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3