Effect of wheel–rail interface parameters on contact stability in explicit finite element analysis

Author:

Ma Yuewei1ORCID,Markine Valeri L1,Mashal Abdul Ahad1,Ren Mingfa2

Affiliation:

1. Section of Railway Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

2. State Key Laboratory of Structural Analysis for Industry Equipment, Dalian University of Technology, Dalian, China

Abstract

It is widely recognized that the accuracy of explicit finite element simulations is sensitive to the choice of interface parameters (i.e. contact stiffness/damping, mesh generation, etc.) and time step sizes. Yet, the effect of these interface parameters on the explicit finite element based solutions of wheel–rail interaction has not been discussed sufficiently in literature. In this paper, the relation between interface parameters and the accuracy of contact solutions is studied. It shows that the wrong choice of these parameters, such as too high/low contact stiffness, coarse mesh, or wrong combination of them, can negatively affect the solution of wheel–rail interactions which manifest in the amplification of contact forces and/or inaccurate contact responses (here called “contact instability”). The phenomena of “contact (in)stabilities” are studied using an explicit finite element model of a wheel rolling over a rail. The accuracy of contact solutions is assessed by analyzing the area of contact patches and the distribution of normal pressure. Also, the guidelines for selections of optimum interface parameters, which guarantee the contact stability and therefore provide an accurate solution, are proposed. The effectiveness of the selected interface parameters is demonstrated through a series of simulations. The results of these simulations are presented and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3