Identification of wheel–rail contact forces based on strain measurements, an inverse scheme and a finite-element model of the wheel

Author:

Ronasi Hamed1,Johansson Håkan1,Larsson Fredrik1

Affiliation:

1. Department of Applied Mechanics, Chalmers University of Technology, Sweden

Abstract

The wheel–rail contact force is an essential parameter in many aspects in railway mechanics, for instance, in rolling contact fatigue analysis. Since the wheel–rail contact force cannot be measured directly, instrumented wheelsets have been developed to collect the radial strains at certain positions on the wheel web. In this paper, an inverse method to estimate the wheel–rail contact force history based on strain measurements is discussed. In the proposed method, the contact force is determined by minimizing the least-squares discrepancy between measured radial strains and corresponding computed strains from a three-dimensional finite-element model of the wheel. The inverse method is compared with the existing method based on direct extraction of the contact force from combinations of measured strains using Wheatstone bridges. Using synthetic data, it is found that the proposed inverse method is insensitive to the eigenmodes of the wheel, as opposed to the existing method. In addition, noise reduction by using Tikhonov regularization and by choosing proper sampling rates are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3