Affiliation:
1. National Engineering Research Centre of Rail Transportation Operation and Control Systems, Beijing Jiaotong University, People’s Republic of China
2. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, People’s Republic of China
3. Birmingham Centre for Railway Research and Education, University of Birmingham, UK
Abstract
A moving block philosophy is increasingly being implemented as part of communications-based train control (CBTC) systems in mass transit operations. Due to its complexity and safety criticality, it is difficult to develop formal methods to support the design of specific schemes. An innovative framework, based on topology mathematics, for supporting CBTC moving block system development is proposed in this paper. Within the new framework, the moving block train control logic is transformed into topological spaces representing the movement authority for trains. Using this approach, the verification of logic and safety properties can be performed by automatic assessment of the topological space. Within the paper the essential characteristics of moving block systems, train behaviour and static track-side infrastructure are analysed. As a result of this analysis, topological units are formed to represent train movement trajectory and standard railway network elements. Four calculation methods: dividing, trimming, covering and integrating, are described as standard unit operations. Finally, a case study is implemented to demonstrate how the method is advantageous for CBTC scheme layout development. It is found that the approach is able to bridge the gap between traditional, highly abstracted, formal methods and the specific safety-critical railway scheme designs.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献