Effect of train speed and track geometry on the ride comfort in high-speed railways based on ISO 2631-1

Author:

Liu Chi1ORCID,Thompson David1,Griffin Michael J1,Entezami Mani2ORCID

Affiliation:

1. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

2. Birmingham Centre for Railway Research and Education, University of Birmingham, Edgbaston, Birmingham, UK

Abstract

The operational speeds of passenger trains have been increasing and now often exceed 300 km/h. Higher speeds can lead to increased vibration and reduced ride comfort for railway passengers. This study investigates the combined effect of speed and track geometry on vibration discomfort in high-speed trains. Railway vehicle dynamic models with various levels of complexity are used, with the measured geometry of a section of a high-speed track as an input. The models have been calibrated with vibration measurements carried out in a train running over this section of the track and then applied to predict the vibration discomfort at increased speeds. To evaluate the vibration discomfort at speeds up to 400 km/h, information on track geometry should include wavelengths up to at least 150 m. Vertical irregularities have the greatest effect at all speeds but lateral irregularities are also important. Both the vertical and lateral irregularities of a high-speed track should be controlled at wavelengths of 50–100 m that excite rigid modes of the car body, corresponding to frequencies of typically 1–2 Hz. Additionally, vertical irregularities with wavelengths of 5–12 m that excite the fundamental flexible mode of the car body, typically around 10–15 Hz, should also be controlled. The effects of cant, the rates of change of cant, and the radius of vertical curves are also evaluated although they only have a small effect on vibration discomfort.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3