The development of a representative multidimensional transient duty cycle for in-service switcher locomotives

Author:

Hegazi Mohamed A1ORCID,Hoffrichter Andreas2,Andrews Jeffrey L1,Lovegrove Gordon1

Affiliation:

1. Faculty of Applied Science, University of British Columbia, School of Engineering, University of British Columbia, Okanagan, BC, Canada

2. DB Engineering & Consulting USA Inc., Sacramento, CA, USA

Abstract

Switcher locomotives operate in railway yards where they shunt railcars and assemble trains. Shunting railcars requires frequent aggressive acceleration and deceleration events in order for the locomotive to push or pull railcars onto specific tracks. As a result, switcher locomotives rarely sustain tractive power for any significant period of time. Given that all switchers in North America rely on diesel-electric propulsion; the result is rapid and frequent transitions in engine power leading to a very low engine efficiency and high levels of emissions. Any attempt to quantify or remedy these issues will face a lack of a representative profile or test cycle. A locomotive duty cycle is a breakdown of time spent at each power level of the locomotive’s engine. A major drawback of current duty cycles is that they only account for steady power. Such cycles are not representative of real switcher locomotive operation. This paper presents a real-world transient duty cycle for switcher locomotives that accounts for the rapid power transitions and is argued to be more statistically representative of actual operations. The methodology adopted relies on real-time data collection, microtrip based trip segmentation, and a finite mixture model-based clustering algorithm. Measurements were collected on a EMD 16-645 GP9 locomotive. The duty cycle developed herein is representative of switching operations in Southern Railway of British Columbia’s New Westminster Yard as an example of the methodology which can be repeated in other cases as well.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3