A study of vertical tie reaction forces in ballasted railroad tracks through field instrumentation and numerical modeling

Author:

Rabbi Md Fazle1,Bruzek Radim2,Sussmann Theodore R3,Thompson Hugh B4,Mishra Debakanta1ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA

2. ENSCO Inc., Springfield, VR, USA

3. Volpe National Transportation Systems Center

4. Federal Railroad Administration, Washington, DC, USA

Abstract

This manuscript presents findings from an ongoing research study at Oklahoma State University studying different factors that affect vertical tie reaction forces in ballasted railroad tracks. A combined approach involving field instrumentation and numerical modeling has been adopted for this purpose. Measurements of tie reactions can indicate the load distribution patterns and quality of vertical support along a track. Locations where tie support conditions are not adequate can develop geometry defects, ultimately leading to component failure. Three different approaches are adopted in this study to measure the forces being transmitted through the rail-tie interface; this is equal to the tie reaction force. The field instrumentation effort validates an alternative method to measure forces at the rail-tie interface using rail-mounted strain gauges. Results from this approach are compared to two other conventional methods of force measurement, i.e. through the use of load cells (LC), and an instrumented tie plate (ITP). A validated 3-dimensional Finite Element (FE) model is used to support the field-observed trends, and explain any observed discrepancy. Parametric analyses using the FE model identify different factors that can contribute to the rail-tie interaction force, thus affecting the instrumentation results. The strain gauge-based approach, using the concept of differential shear strain measurement, has been established as a suitable method for tie reaction force measurement. Exact measurement of the tie reaction force can be ensured through proper installation of the strain gauges, away from possible boundary effects.

Funder

Federal Railroad Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Large-Scale Simulation of Railroad Dynamics: Coupled Train–Track–Discrete Element Method Model;Transportation Research Record: Journal of the Transportation Research Board;2024-07-27

2. Response of Strain-Gauge-Based Tie Reaction Measurement Circuits under Dynamic Loading and Variable Support Conditions;Transportation Research Record: Journal of the Transportation Research Board;2023-09-16

3. Coupling Train-Track Models with the Discrete Element Method for a More Realistic Simulation of Ballasted Track Dynamic Behavior;Transportation Research Record: Journal of the Transportation Research Board;2023-03-13

4. Field Verification of Elastic Modulus Measurements;2023

5. Using Detailing Concept to Assess Railway Functional Safety;Sustainability;2022-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3